

FACULTY OF ENGINEERING DEPARTMENT OF AGRICULTURAL MECHANISATION AND IRRIGATION ENGINEERING

FINAL YEAR PROJECT REPORT DESIGN AND CONSTRUCTION OF A FINGER MILLET DEHUSKING AND CLEANING MACHINE. BY: TUMWESIGYE ALEX BU/UG/2016/96.

SUPERVISOR: MR. JAMES MENYA.

A final year project report submitted to the department of Agricultural Mechanisation and Irrigation Engineering in partial fulfilment of the requirements for the award of the BSc. Of Degree in Agricultural mechanization and irrigation engineering at Busitema University.

December 2020

ABSTRACT

Finger millet (**Eleusine coracana L.**) is a grass cereal crop grown in many countries of Africa and Asia. Finger millet can be ground and cooked into cakes, puddings or porridge. The grain is made into a fermented drink (or beer) in Nepal and in many parts of Africa. The straw from finger millet is used as animal fodder.

In Uganda finger millet is one of the oldest human foods and is important food for sustaining tribal population in western and northern regions of the Country.

Finger millet production and value addition chain involves a number of activities right from harvesting, drying, threshing, winnowing, dehusking, cleaning and then milling to produce high quality millet flour.

This project was designed and constructed to help the local farmers, small and medium scale industries to improve on the quality of their millet flour and grains which would yield high market prices hence improving their economic wellbeing and this was achieved by dehusking and cleaning the millet grains.

The design of the various machine parts was carried out by analyzing forces acting on them. Force analysis led to selection of proper materials to withstand the forces to avoid failure. Mild steels of various grades were the main materials recommended to be used because they are food grade, strong and durable. Engineering drawings of the various components were drawn before the various components were constructed and then machine parts fabricated. A fully functional prototype resulted after all the above operations. Testing of the prototype was carried out and the figures revealed that the machine was 79.74% efficient and 74.0 separation efficiency. The millet dehusking and cleaning machine has a total cost of 424.04\$ which includes all the taxes, cost of material, machinery and hired labor to construct the machine, the cost evaluation analysis of the project was based on the payback period method, and on net present value method with NPV of 2,497.62\$ over a period of three years

i

DECLARATION

I TUMV	WESIG	YE A	LEX	decla	are 1	to th	e best	of my	knowledge	e th	at this proj	ect 1	repo	rt is as a re	esult
of my i	research	and	effort	and	it	has	never	been	presented	or	submitted	to	any	institutio	n or
universi	ity for an	aca	demic	awar	d.										

SIGNATURE	•••••	• • • • • • • • •	 	
DATE	• • • • • • • • •		 	

APPROVAL

This final year project report was compiled and submitted to the Department of Agricultural
Mechanization and Irrigation Engineering under the supervision of;
Supervisor
Mr. JAMES MENYA
Signature
Date

DEDICATION

This report is dedicated to my beloved parents Mr. Mwesigye Patrick and Miss. Turyahebwa Gloria in appreciation for their selfless care and unflinching support provided to me since my childhood and for the spirit of hard work, courage and determination instilled into me, which attributes I have cherished with firmness and which have indeed made me what I am today.

ACKNOWLEDGEMENT

First and foremost, I would like to thank the ALMIGHTY GOD for my life and good health I am living today. Thank you, Father, and may your name be glorified.

Great thanks to my supervisor, MR. JAMES MENYA for his time, and guidance he has rendered to me making it a success in compiling this report.

Lastly, I warmly thank all my friends and course mates for all their support and assistance that has been a positive contribution to the success for this report.

Table of Contents

ABSTR	RACT	i
DECLA	ARATION	i
APPRO	OVAL	ii
DEDIC	CATION	iv
ACKN	OWLEDGEMENT	v
CHAPT	TER ONE: INTRODUCTION	1
1.1	BACKGROUND	1
1.2	Problem statement.	2
1.3	Justification of the study.	2
1.4	OBJECTIVES	2
1.4	4.1 Main objective	2
1.4	4.2 Specific objectives.	3
1.5	Scope of the Study	3
CHAP	TER TWO: LITERATURE REVIEW	∠
2.1	Physical properties of millet	∠
2.2	Mechanical properties:	4
2.3	Post-harvest operations of millet.	6
2.4	Millet dehusking and cleaning.	8
2.4	4.1 Methods and equipment used for dehusking finger millet	8
2.4	4.2 SEPARATION METHODS	9
CHAP	TER THREE: METHODOLOGY	11
3.1	Design Considerations	11
3.2	Construction and mode of operation of the machine	11
2 2	2.1 Construction	11

a. T	o design the components of the prototype	13
i.	Design of a hopper	13
ii.	Design of the de-husking cylinder (drum).	13
iii.	Dehusking clearance	16
iv.	Dehusking chamber	16
v.	Design of the shaft	16
iii.	Design for the air blower	20
i.	Driving mechanism.	21
ii.	Design of Frame	23
b. T	To fabricate and assemble the different components of the prototype	24
i.	Material Selection Criteria	24
ii.	Fabrication Methods and Processes to be used.	26
c. T	To test the performance of the prototype	27
i.	Dehusking Efficiency, DE	27
ii.	Blower efficiency.	28
d. T	To conduct a cost benefit analysis of the prototype	28
CHAPT	ER FOUR: RESULTS AND DISCUSSION	30
DESIG	GN CALCULATIONS FOR THE MACHINE COMPONENTS	30
4.1	Specific objective I: To design the components of the prototype	30
4.1.	1 Volume of the dehusking chamber	30
4.1.	2 Volume of dehusking square bars (vb)	30
4.1.	3 Design of a hopper	30
4.1.	4 Determination of pulleys diameters	32
4.1.	5 Diameter of the pulley fun	33
4.1.	6 Determination of belt length	33

4.1.7	Angle of contact lap	35
4.1.8	Power required by the machine	35
4.1.9	Determination of belt tensions	36
4.1.10	Belt selection	36
4.1.11	The Blowing Fan	39
4.1.12	Shaft Diameter	40
1.6 to 2	2.0	41
4.1.3 Con	nputation of the angle of wrap due to fun $belt(\alpha)$	44
4.1.13	Design of the key	46
4.1.14	Frame	46
4.2 Spe	ecific objective 2: Fabrication and assembly of the machine	48
4.2.1	Material selections	48
4.2.2	Fabrication of the machine	48
4.3 Spo	ecific objective 3: Testing for the performance of the prototype	50
4.3.1	Testing for the Performance of the Prototype	51
4.3.2	dehusking Efficiency, DE.	51
4.3.3	cleaning efficiency of the blower	52
4.3.4	Throughput capacity, Cc was express as	53
4.4 Spo	ecific objective 4: The economic analysis of the prototype	53
4.4.1	Cost of the Machine	54
4.4.2	Profitability index	55
4.1.1	Pay-back period. PBP	56
CHAPTER	FIVE: CONCLUSION AND RECOMMENDATION	57
5.1 Co	nclusion	57
5.2 Re	commendations	57

References	58
APPENDICES	60

LIST OF FIGURES

Figure 1 Showing a conceptual frame work of millet processing operations	7
Figure 2 Manual operations of finger millet dehusking	8
Figure 3 A motorized finger millet dehusking machine	9
Figure 4 Manual winnowing of finger millet	10
Figure 5 Prototype diagram and its operational sequence	12
Figure 6 Rotating object and forces acting on it.	14
Figure 7 Belts in tention	23
Figure 8 shows the speed power capabilities for leather v-belt	37
Figure 9 blower efficiency at different speeds	52

LIST OF TABLES

Table 1 showing finger millet production in regions Error! Bookmark not defi	ned.
Table 2 showing the physical properties of finger millet	4
Table 3 Flow characteristics of finger millet with respect to angle of repose	5
Table 4 Mechanical properties of finger millet	6
Table 5 showing physical properties of metals	25
Table 6 Showing the design of a hopper	32
Table 7 Showing the design of the length of the belts	34
Table 8 Showing power required by the machine calculation	35
Table 9 tension in the belts	38
Table 10 shows the recommended values of Kb and Kt for different nature of load on shafts.	41
Table 11 design calculation for the diameters of shafts	42
Table 12 design for the main support frame	46
Table 13 fabrication and assemble of different machine components	48
Table 14 different testing performances of the prototype	51
Table 15 showing different blower efficiencies at different speeds	52
Table 16 Total costs incurred on a machine	53
Table 17 showing depreciation and netbook value of the machine per year	54
Table 18 Net present value computation	55

List of acronyms

FAO Food and Agriculture Organization.

UBOS Uganda bureau of standards

UCA Uganda Census of Agriculture

Mt Metric tones

Ha Hectares

Kg Kilograms

mm millimeters