

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF WATER RESOURCES AND MINING ENGINEERING FINAL REPORT

DESIGN AND FABRICATION OF A SEMI-AUTOMATED PLASTERING MACHINE

BY

NKOLE AARON

REG NO: BU/UP/2020/0286

A final year project submitted to the Department of Water Resources Engineering in partial fulfillment of the requirements for the award of a Bachelor of Science degree in Water Resources Engineering.

September 2024

ABSTRACT

This project encompasses the design and fabrication of a semi-automated plastering machine, undertaken as part of the requirements for the Bachelor of Science degree in Water Resources Engineering. The primary objective of this project was to develop a machine that streamlines the plastering process, reducing reliance on manual labor while enhancing efficiency within the construction industry. The report highlights the background and challenges prevalent in the construction sector due to labor-intensive manual plastering techniques, emphasizing the need for automated solutions to improve productivity, reduce labor costs, and expedite project timelines. The report outlines the methodology encompassing the design, fabrication, and testing phases, incorporating key considerations such as material selection, component design, and performance testing. Through a comprehensive review of automated plastering technologies, this deigns project addresses the significance, scope, and objectives of the design. The fabricated system, comparisons with manual methods, and financial analysis carried out elucidate the transformative impact this project aimed to deliver, aligning with Sustainable Development Goals and offering substantial benefits to the construction industry in terms of efficiency, productivity, and sustainable growth.

Keywords: Plastering, manual, labor cost, fabrication, automation, plastering time, etc.

DECLARATION

I NKOLE AARON a Busitema University student Reg. No. BU/UP/2020/0286 here by declare that this design project report is s as a result of my own research and efforts and has not been previously submitted in any other higher institution of learning for any academic award.

Name: NKOLE AARON

Reg. No: BU/UP/2020/0286.

DATE: 06. / 09. / 20.244

ACKNOWLEDGMENT

I take this opportunity to thank God who has protected and provided till this far in my academic journey.

I thank my Parents and siblings for their financial, moral and spiritual support offered to me in this academic journey

I as well thank my class mates for their guidance, cooperation and interactions during our class activities as we aim at succeeding in all we would do.

I also thank, Mr. Baagala Brian Sempijja for the time, guidance and effort invested through my project preparation process.

APPROVAL

Engineering and		sitema University	of Water Resou	rees Engineering	g, Faculty
Supervisor	reciniology, bu	sucina Oniversity	/		
Name: Mr. Baaga	ala Brian Samaii	:			
Traine. Ivii. Baag	na brian sempij	ja N			
Signature:	MM				
Date: 06, 0	9, 70	110			
Date)/	<u>.</u>			
	0,0				
				*	e

DEDICATION

I dedicate this report to my family especially dad, Mr. Ndyabahika Patrick that financially supported throughout this fabrication project, friends that cooperated with me during the smooth running of the project. May God bless you.

Table of contents

ABSTRACT	i
DECLARATION	ii
ACKNOWLEDGMENT	iii
APPROVAL	iv
DEDICATION	v
Table of contents	vi
List of figures	ix
List of tables	X
List of Abbreviations	X
CHAPTER ONE	1
Introduction	1
1.1 Back ground	1
1.2 Problem statement	3
1.3 Justification	4
1.4 Objectives	4
1.5 Significancy of the study	4
1.6 scope of the study	5
Conceptual framework	6
2.0 CHAPTER TWO: LITERATURE REVIEW	7
Introduction to Automated Plastering Technologies	7
Comparison with Alternative Methods	7
Case Studies and Projects	8
2.1 Literature review for objective 1: Designing the components of the plastering M	achine10
2.1.1 Classification of a machine design	10

2.1.2 Material selection	11
2.1.3 Component design	12
2.1.4Design Calculations	13
2.2 Literature review for objective 2: Fabrication and Testing of the System	13
2.2.1 Fabrication Concepts used by plastering machines	13
2.2.2 Material selection for Fabrication	15
2.2.3 Equipment and methods used in Fabrication	15
2.2.4 Efficiency and Performance Tests	16
2.3 Literature review for objective 3: Financial Analysis of the Project	16
2.3.1 Cost-benefit analysis	16
2.3.2 Profitability Index	17
2.3.3 Economic and Industry Impact	17
2.3.4 Regulatory and Compliance Considerations	17
2.3.5 Conclusion	18
3.0 CHAPTER THREE: METHODOLOGY	19
Introduction	19
3.1 Design of the components of the plastering machine system	19
3.1.1 Design Considerations	19
3.1.2 Material Selection	21
3.1.3 To produce a conceptual design	21
Preliminary diagram	22
3.2 Fabrication and testing the performance of the plastering machine system	29
3.2.1 System Construction and working principle	29
3.3 Financial analysis of the project	29
Net Present Value (NPV)	29

3.3.2 Profitability index
4.0 CHAPTER FOUR: RESULTS AND DISCUSSION
4.1 To design the components of the plastering machine system31
4.2 To fabricate and test the performance of the system
Electrical connection
4.3 To perform a financial analysis of the project53
CONCLUSION
RECOMMENDATIONS
REFERENCES i

List of figures

Figure 1:The Conceptual framework	6
Figure 2:The Trowel Plastering technique.	8
Figure 3: The Plastering machine invented by Raymond A. Delligatti	8
Figure 4:The Concept generation for plastering machine.	14
Figure 5: The Methodological Flowchart	
Figure 6:The Conceptual diagram	22
Figure 7:The 360 degrees wheel rollers	29
Figure 8:The Hopper design drawing 1(angle of repose)	
Figure 9: The Hopper design drawing 2(determination of dimensions	
Figure 10:The Friction force Analysis drawing for hopper movement	
Figure 11:The Vertical frame Cross section	
Figure 12:The motor Drawing	38
Figure 13:The Shaft	
Figure 14: The geometric properties of the Shaft	43
Figure 15 :The shaft deflection in the Y-direction	44
Figure 16: Shear force Diagram of the Shaft	44
Figure 17:Bending moment diagram of the Shaft	45
Figure 18:Showing the Factor of safety simulation result	47
Figure 19:The hopper fabrication process	48
Figure 20: Showing the Circuit diagram	48
Figure 21:Showing the Electrical circuit connection process	49
Figure 22:The machine after fabrication	xi
Figure 23:Setting up the machine for plastering work to commence	xi
Figure 24:Plastering work on going	xii

List of tables

Table 1:Showing some Project titles and their findings(Askar & Raut, 2017)	9
Table 2:Showing the components and proposed materials	12
Table 3:Showing the Selection criteria for the hopper material	22
Table 4:Showing the Material Selection criteria for a suitable wire rope	24
Table 5:Showing Material selection criteria for the frame	25
Table 6:Showing Selection criteria of a prime mover.	26
Table 7:Showing the Selection criteria of the Power transmission system from the motor	27
Table 8:Showing the Model Information	46
Table 9:Showing the comparison between the Semi- automated Plastering machine and the	
Manual techniques	50
Table 10: Bill of Quantities	53

List of Abbreviations

SDG Sustainable Development Goal

GNP Great National Product

UBOS Uganda Bureau of statics

USA United States of America

UN United Nations

Rpm Revolutions per minute

ASTM American Society for Testing and Materials

CHAPTER ONE

Introduction

The current landscape of construction involves conventional methods, particularly in wall plastering, where manual processes dominate. The reliance on skilled labor for plastering work not only contributes to elevated labor costs but also introduces variability in the quality of the final product. This existing paradigm prompts the exploration of innovative solutions to address inefficiencies and enhance overall construction practices. In response, this design project focuses on the development of a semi-automated wall plastering machine. By acknowledging the limitations of traditional techniques and leveraging technological advancements, the project seeks to revolutionize the plastering process, introducing a more efficient and standardized approach to construction

1.1 Back ground

The construction sector serves as the backbone of a nation's progress, complicatedly linked to civilization, industrialization, and transportation, with its genesis in the initial stages of construction(Kumar M et al., 2020),(Askar & Raut, 2017). Globally, the foundation of this design project lies in the realization that the construction industry, comprising 10-20% of the GNP, is still largely reliant on labor-intensive, time-consuming, and repetitive methods for example, contractors in Malaysia are still using the traditional way in the process of plastering walls.(Zulhazreen et al., 2021)(Kumar M et al., 2020).

The evolution in construction practices has encouraged contractors to optimize equipment for maximum efficiency at minimized costs, focusing on reducing labor expenses and plastering time.(Kumar M et al., 2020). Consequently, extended project timelines, increased labor expenses, compromised quality standards, and project delays persist, undermining competitiveness and impeding overall economic growth.

In Uganda, according to Uganda Bureau of statics (UBOS) 2010, nearly 60% of all the houses are constructed with brick walls with the greater percentage employing the present measures within the construction sector that predominantly focus on using traditional plastering techniques. These included the use of trowels to apply the plaster to the wall in different layers until the final desired thickness is achieved after leveling with the float and this highlights the industry's slow pace in

REFERENCES

- Askar, A. N., & Raut, L. P. (2017). International journal of engineering sciences & research technology design of automatic wall plastering machine. *International Journal of Engineering Sciences & Research Technology Design*, 6(3), 543–555.
- Askar, A. N., Raut, L. P., Cam, M. T. C. A. D., & Nagpur, G. (2017). *International journal of engineering sciences & research technology design of automatic wall plastering machine*. 6(3), 543–555.
- Ban, C. C., & Ramli, M. (2010). Optimization of Mix Proportion of High Performance Mortar for Structural Applications Cheah Chee Ban and Mahyuddin Ramli Sustainable Housing Research Unit, School of Housing, Building and Planning, *Concrete*, *3*(4), 643–649.
- Beygi, M. H. A., Kazemi, M. T., Nikbin, I. M., & Amiri, J. V. (2013). The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete. *Materials & Design*, 50, 267–276.
- Biradar, A., Shejwal, V., Barate, A., & Barate, S. (2016a). Automatic Wall Plastering Machine. *Ijetr*, *4*(1), 22–32.
- Biradar, A., Shejwal, V., Barate, A., & Barate, S. (2016b). *Automatic Wall Plastering Machine*. 0869(1), 22–32.
- Edwards, E. (2023). What is a 3-Phase Motor and How Does it Work? 1–11.
- Goldberg, K. (2012). What is automation? *IEEE Transactions on Automation Science and Engineering*, 9(1), 1–2. https://doi.org/10.1109/TASE.2011.2178910
- Gumerova, E., Gamayunova, O., & Gorshkov, R. (2017). Choosing the appropriate way of plastering works for transportation and construction facilities. *IOP Conference Series: Earth and Environmental Science*, 90(1). https://doi.org/10.1088/1755-1315/90/1/012185
- Kumar M, R., V, A., Sharma, C. S., Mujhahid, S., & Alim, A. (2020). Development and

- Fabrication of Semi-Automated Wall Plastering Machine. *SSRN Electronic Journal, May*, 728–734. https://doi.org/10.2139/ssrn.3510945
- Lafhaj, Z., Goueygou, M., Djerbi, A., & Kaczmarek, M. (2006). Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. *Cement and Concrete Research*, *36*(4), 625–633. https://doi.org/https://doi.org/10.1016/j.cemconres.2005.11.009
- Members, G., Al-hamad, A., Khraishi, R., & Yonis, S. (2016). $\Box \Box \Box \Box \Box \Box . 3-12$.
- Morning, T. (1996). Z Z I. *Optical Engineering*, 289, 87–88.
- Nyemba, W. R., Shangwa, N. L., Chinguwa, S., & Mbohwa, C. (2020). Conceptualization, development and design of a mortar spraying machine. *Procedia CIRP*, 91, 396–401. https://doi.org/10.1016/j.procir.2020.03.105
- Of, D., Systems, T., & Flexible, F. O. R. (n.d.). *ME-6601*.
- Pulido-Arcas, J. A., Flores-Alés, V., & Pérez-Fargallo, A. (2022). Coating mortars with improved physical properties, economic cost, and carbon footprint. *Case Studies in Construction Materials*, *16*, e01095.
- Solution, T. (n.d.). wgm.
- Sulankivi, K., Zhang, S., Teizer, J., Charles, M., Kiviniemi, M., Romo, I., & Granholm, L. (2013). Utilization of BIM-based automated safety checking in construction planning. *CIB World Building Conference* 2013, 11.
- Thakur, A. K., Jaiswal, B. P., Mandal, N. K., Yadav, S. K., Pandit, S., & Yadav, R. (2020).

 International Journal of Advanced Engineering Modelling and Fabrication of Automatic

 Wall Plastering Machine. 03(02).
- United Nations. (2016). Final list of proposed SDG. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators, Annex IV.
- Units, S. I. (2005). A textbook of. I.

- Zulhazreen, M., Goh, C. H., Tan, W. J., Law, J. C., Radhwan, H., Dawi, M. S. I. M., Farizuan, M., & Asyahid, W. A. R. (2021). Design and Analysis of Auto-Plastering Machine. *Journal of Physics: Conference Series*, 2129(1). https://doi.org/10.1088/1742-6596/2129/1/012031
- Askar, A. N., & Raut, L. P. (2017). International journal of engineering sciences & research technology design of automatic wall plastering machine. *International Journal of Engineering Sciences & Research Technology Design*, 6(3), 543–555.
- Askar, A. N., Raut, L. P., Cam, M. T. C. A. D., & Nagpur, G. (2017). *International journal of engineering sciences & research technology design of automatic wall plastering machine*. 6(3), 543–555.
- Ban, C. C., & Ramli, M. (2010). Optimization of Mix Proportion of High Performance Mortar for Structural Applications Cheah Chee Ban and Mahyuddin Ramli Sustainable Housing Research Unit, School of Housing, Building and Planning, *Concrete*, *3*(4), 643–649.
- Beygi, M. H. A., Kazemi, M. T., Nikbin, I. M., & Amiri, J. V. (2013). The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete. *Materials & Design*, 50, 267–276.
- Biradar, A., Shejwal, V., Barate, A., & Barate, S. (2016a). Automatic Wall Plastering Machine. *Ijetr*, *4*(1), 22–32.
- Biradar, A., Shejwal, V., Barate, A., & Barate, S. (2016b). *Automatic Wall Plastering Machine*. 0869(1), 22–32.
- Edwards, E. (2023). What is a 3-Phase Motor and How Does it Work? 1–11.
- Goldberg, K. (2012). What is automation? *IEEE Transactions on Automation Science and Engineering*, 9(1), 1–2. https://doi.org/10.1109/TASE.2011.2178910
- Gumerova, E., Gamayunova, O., & Gorshkov, R. (2017). Choosing the appropriate way of plastering works for transportation and construction facilities. *IOP Conference Series: Earth and Environmental Science*, 90(1). https://doi.org/10.1088/1755-1315/90/1/012185
- Kumar M, R., V, A., Sharma, C. S., Mujhahid, S., & Alim, A. (2020). Development and

- Fabrication of Semi-Automated Wall Plastering Machine. *SSRN Electronic Journal, May*, 728–734. https://doi.org/10.2139/ssrn.3510945
- Lafhaj, Z., Goueygou, M., Djerbi, A., & Kaczmarek, M. (2006). Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. *Cement and Concrete Research*, *36*(4), 625–633. https://doi.org/https://doi.org/10.1016/j.cemconres.2005.11.009
- Members, G., Al-hamad, A., Khraishi, R., & Yonis, S. (2016). $\Box \Box \Box \Box \Box \Box . 3-12$.
- Morning, T. (1996). Z Z I. *Optical Engineering*, 289, 87–88.
- Nyemba, W. R., Shangwa, N. L., Chinguwa, S., & Mbohwa, C. (2020). Conceptualization, development and design of a mortar spraying machine. *Procedia CIRP*, *91*, 396–401. https://doi.org/10.1016/j.procir.2020.03.105
- Of, D., Systems, T., & Flexible, F. O. R. (n.d.). *ME-6601*.
- Pulido-Arcas, J. A., Flores-Alés, V., & Pérez-Fargallo, A. (2022). Coating mortars with improved physical properties, economic cost, and carbon footprint. *Case Studies in Construction Materials*, *16*, e01095.
- Solution, T. (n.d.). wgm.
- Sulankivi, K., Zhang, S., Teizer, J., Charles, M., Kiviniemi, M., Romo, I., & Granholm, L. (2013). Utilization of BIM-based automated safety checking in construction planning. *CIB World Building Conference* 2013, 11.
- Thakur, A. K., Jaiswal, B. P., Mandal, N. K., Yadav, S. K., Pandit, S., & Yadav, R. (2020).

 International Journal of Advanced Engineering Modelling and Fabrication of Automatic

 Wall Plastering Machine. 03(02).
- United Nations. (2016). Final list of proposed SDG. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators, Annex IV.
- Units, S. I. (2005). A textbook of. I.

Zulhazreen, M., Goh, C. H., Tan, W. J., Law, J. C., Radhwan, H., Dawi, M. S. I. M., Farizuan, M., & Asyahid, W. A. R. (2021). Design and Analysis of Auto-Plastering Machine. *Journal of Physics: Conference Series*, 2129(1). https://doi.org/10.1088/1742-6596/2129/1/012031