

FACULTY OF ENGINEERING

DEPARTMENT OF AGRICULTURAL MECHANIZATION AND IRRIGATION ENGINEERING

DESIGN AND CONSTRUCTION OF A SOLAR – BIOMASS HYBRID DRYER FOR COCOA BEANS

By

Zirete Daniel

BU/UG/2013/12

danielzirete@gmail.com

+256705371456/ +256783432124

Supervisors: Mr. Ashabahebwa Ambrose

Mr. Sserumaga Paul

Submitted in partial fulfillment for the award of the Bachelors' Degree in Agricultural Mechanization and Irrigation Engineering in Busitema University

ABSTRACT

In Uganda, cocoa has been grown for all the years and farmers have always relied on open sun drying as the main drying method however, this method has proven to ineffective during rainy season since high yields of Cocoa pods are normally received during rainy seasons, and also associated with a serious risk of contamination with wind-borne dirt and dust, dead insects and animal droppings thus lowering the quality of the cocoa beans produced.

Innovations of solar dryers have been made and put on market to reduce losses related to drying of grains and also improve the drying conditions of agricultural products. But these systems also face similar challenge as the open sun drying due to dependency on weather conditions and lacking a means of regulating temperatures within the drying chamber with low drying effectiveness factor.

This project aims at design and construction of a solar – biomass hybrid dryer using locally available materials at relatively low cost. The dryer is composed of solar collector for optimizing the amount of solar energy for drying, back-up heater which acts as the backup energy source to enable drying to continue till the night hours and reduce on the drying period, airflow system for carrying heat energy to the drying chamber and a temperature regulating system, this controls the heat energy inside the drying chamber automatically.

The design was based on the study area of Imanyiro sub county located Mayuge district, where cocoa is being grown by many farmers. The average ambient conditions were; 25°C air temperature and 75% relative humidity with daily global solar radiation incident on horizontal surface of about 5 MJ/m²/day. A minimum of 0.2m² solar collector area was required to dry a batch of 6kg of cocoa beans in 26h with the dryer from the initial moisture content of 50.8% to final moisture content of 7.75%. The system has an effectiveness factor of 1.52 which makes is 52% more effective than the open sun drying and a drying efficiency of 11.6% which is low because of the non-uniform drying temperature on the trays due to un even distribution of heat, heat losses though the joints, heat loss due to poor insulating material and also the heat obtained by burning the biomass does not directly come in contact with the cocoa beans, but instead heats the air duct which in turn heats the drying air. However, preventing leakage in the air supply system, use of better lagging (insulating) material, and increasing the size of the flat plate collector will increase the efficiency of the system.

DECLARATION

I, Zirete Daniel hereby declare to the best of my kno	wledge that this report is my own work
towards the B.Sc. in Agricultural Mechanization and Ir	rigation Engineering and, it has not been
published by another person for the award of any othe	r degree in any University, except where
due acknowledgment has been made in the text.	
Signature:	Date:

APPROVAL

This work was authenticated by the following Supervisors;			
Name: Mr. Ashabahebwa Ambrose	Signature:	Date:	
N Mr. Coommon on Davi	G* 4	Dete	
Name: Mr. Sserumaga Paul	Signature:	Date:	

DEDICATION

I dedicate this report to my precious and loving mother **Namutibwa Irene** for all the tremendous support that she has always given to ensure that I reach this academic level.

ACKNOWLEDGEMENTS

I start by extending my word of thanks to the Almighty God for breath of life, courage and strength that He has given to me.

I am also thankful to my supervisors Mr. Ambrose Ashabayebwa, and Mr. Sserumaga Paul for their support and guidance while compiling this report.

And finally, I love to extend my sincere gratitude to my family and friends for their support and encouragement at all times, May the Almighty God bless you all.

LIST OF FIGURES

Figure 2-1: cocoa plant	4
Figure 2-2: cocoa pod	
Figure 2-3: Cabinet Dryer	6
Figure 2-4: Forced Convection Direct Mode Solar Dryer	
Figure 2-5: Solar - biomass hybrid dryer	8
Figure 2-6: Operation of a solar flat plate collector	10
Figure 3-1: Energy flows for a flat plate solar thermal collector	14
Figure 3-2: Temperature regulation system	17
Figure 3-3: Testing prototype	21

Table of Contents

AB	STR	ACT		i
DE	CLA	RATI	ON	ii
ΑP	PRO	VAL .		iii
DE	DICA	ATIO	N	iv
AC	KNO	WLE	DGEMENTS	v
LIS	ST OF	FIG	URES	vi
СН	[APT]	ER O	NE	1
1	INT	ROD	OUCTION	1
]	1.1	Bac	kground	1
1	1.2	Prob	olem Statement	2
1	1.3	Purp	pose of the Study:	2
1	1.4	Obje	ectives of the study:	2
	1.4.	.1	Main objective	2
	1.4.	.2	Specific objectives:	2
1	1.5	Just	ification:	2
1	1.6	Sco	pe of the study:	3
СН	[APT]	ER T	WO	4
2	LIT	'ERA'	TURE REVIEW	4
2	2.1	Cro	p data	4
2	2.2	Coc	oa growing areas in Uganda	4
2	2.3	Prin	ciples of open sun drying	5
	2.3.	.1	Limitations open sun drying	5
2	2.4	Sola	r system (solar dryers) drying	5
	2.4.	.1	Types of Solar Dryers	5
2	2.5	Dire	ect Solar Dryers	6
	2.5.	.1	Existing dryers	6
2	2.6	Sola	ar-biomass hybrid dryer	8
2	2.7	Gap	s Identified in the Review	8
2	2.8	Con	nponents of the solar – biomass dryer	9
	2.8.	.1	Solar Collector	9
	2.8.	.2	Drying Chamber	10
	2.8.	.3	Drying Temperature	11

	2.8.4	Chimney	11
СН	APTER T	HREE	11
3	MATER	IALS AND METHODS	11
3	3.1 Des	ign of the drier and its components	11
	3.1.1	Design Procedure	11
	3.1.2	Design parameters considered	12
	3.1.3	Determination of parameters	12
	3.1.4	Sizing the solar collector	13
	3.1.5	Sizing the drying chamber	15
	3.1.6	Air Flow Requirement	15
	3.1.7	Temperature regulation system	16
3	3.2 Perf	Formance Evaluation of Dryers	17
	3.2.1	Collector Efficiency and Drying Efficiency	17
	3.2.2	Drying Efficiency	18
	3.2.3	Drying Rate	18
	3.2.4	Moisture Content	19
	3.2.5	Material Selection Criteria	20
	3.2.6	Fabrication Methods and Processes used	21
	3.2.7	Prototype	21
CH	APTER FO	OUR:	22
4	RESULT	S AND DISCUSSION	22
4	4.1 Des	ign calculations	22
	4.1.1	Amount of moisture to be removed	22
	4.1.2	Heat energy requirement for drying	22
	4.1.3	Heat required to vaporize moisture from the produce	22
	4.1.4	Heat energy expected at the solar collector	23
	4.1.5	Sizing the solar collector	23
	4.1.6	Heat loss in the collector.	23
	4.1.7	Mass of biomass required to attain the desired heat energy	24
	4.1.8	Sizing the drying chamber	24
	4.1.9	Quantity of air needed for drying	25
	4.1.10	Determining the cross section area of the air channel	26
	4.1.11	Average drying rate	27
	4.1.12	Project cost	28
4	4.2 Exp	erimental results	29

4.2.1	Drying Test	29
4.3 Per	formance evaluation	31
4.3.1	Collector Efficiency	31
4.3.2	Drying Efficiency	31
4.3.3	Drying rate	32
4.3.4	Effectiveness factor	32
4.4 Eco	nomic analysis	32
CHAPTER F.	IVE:	34
5 CONCL	USION AND RECOMMENDATIONS	34
5.1 Cor	nclusion	34
5.2 Rec	commendations	35
References		36
Appendix		37
* *	one: photos	
	wo: CAD drawings	

CHAPTER ONE

1 INTRODUCTION

1.1 Background

In Uganda organic cocoa is grown mostly in Bundibugyo, Mukono, Jinja, Kamuli, Buikwe, Masindi, Mayuge, Iganga and Kayunga districts on a small scale with an estimate of about 15,000 farmers are involved cocoa growing (Wetala, 2014)

Cocoa is one of the most profitable crops for smallholder farmers in Uganda (Kraybill and Kidoido, 2009) and because Ugandan cocoa is reputed to have special aromatic properties that are favored by chocolates manufacturers, it has increased the demand of cocoa by the large chocolate companies that manufacture special flavour chocolates. Cocoa beans are used for production of chocolate, and beverages.

In Uganda, Farmers normally receive high yields of Cocoa pods during rainy seasons (Feb - April and Sept. - Dec) which season offers Poor drying weather conditions leading to slow drying rate, which results into negative realization of bio-chemical degradation and browning reactions of cocoa beans resulting in strong acidic flavor, weak 'chocolate' flavour, possession of other off-flavour and development of moulds. Since the inception of cocoa growing, Open sun drying has been the predominant method of drying cocoa beans, which is associated with a number of limitations like; dependence on weather conditions, labor intensive, unhygienic, unreliable, time consuming, non-uniform drying and requires a large area for spreading the produce out to dry which compromise the quality of cocoa beans produced.

Innovations of solar dryers have been tailored to reduce losses related to drying of grains and other agricultural products. However, most standalone solar dryers have proven inefficient for drying cocoa beans most especially during the rainy season.

Therefore, this project is focused to the development of a solar – biomass hybrid drier that is able to dry cocoa in a more closed and controlled environment to achieve the highest quality of dried cocoa beans without being much affected weather conditions.

References

Deutsche F.S., 2010. Planning and installing solar thermal systems, second edition, A guide for installers, architects and engineers.

Trim D.S., Kennedy L., 1985. Solar dryers- their role in post-harvest processing. Duffie, J. A. and Beckman, W. A. (1980). Solar Energy of Thermal Processes (2nd edition.). John

Wiley & Sons, Inc, New York, 919p

Duffie J.A.et al., 2006. Solar Engineering of Thermal Processes, Third edition. Wiley Interscience Publications

Svenneling, J. (2012). Constructing a Solar Dryer for Drying of Pineapples: Implementing a Solar Dryer for Sustainable Development in Ghana. Karlstands University, Netherlands.

Struckmann, F. (2008). Analysis of a Flat-plate Solar Collector. Project Report: 2008 MVK 160 Heat and Mass Transport. Lund University, Lund, Sweden

Raju, R. V. S., Reddy, R. M. and Reddy, E. S. (2013). Design and Fabrication of Efficient Solar Dryer. Journal of Engineering Research and Applications, 3(6): 1445–1458.

Mercer, D. G. (2007). An intermediate course in food dehydration and drying. Department of Food Science, University of Guelph, Ontario, Canada

Bena, B. andFuller R.J (2002). Natural convection solar dyer with biomass back-up heater. Sol. Energy, 72: 75-83

Wetala, D. P. (2014). Uganda Agricultural News and Research Digest. Kampala: Daily Monitor Cocoa growing in Uganda.