

FACULTY OF ENGINEERING

DEPARTMENT OF MINING AND WATER RESOURCES ENGINEERING

FINAL YEAR PROJECT REPORT

GIS/RS BASED INVESTIGATION AND DESIGN OF A MANAGED AQUIFER RECHARGE SYSTEM IN LYANTONDE DISTRICT

BY

MUHINDO ANDREW

BU/UP/2017/1832

TEL: +256775241361/+256707733080

EMAIL: muhindoandrew1@gmail.com

SUPERVISORS

MR. MUYINGO EMMANUEL

MR. OKETCHO YORONIMO

A final year project report submitted to the Department of water resources and mining engineering in partial fulfillment for the award of the Bachelor of Science in Water Resources Engineering degree of Busitema University

ABSTRACT

Survival and ecological development on earth depends on water as an essential natural resource. All countries especially arid and semi- arid regions, face ground and surface water problems which include; ground and surface water challenges, inadequate rainfall, water pollution, declining agricultural production, and climatic change issues. Water-scarcity areas can be classified into; high need areas, water-scarce areas, and high potential areas. Physical water scarcity is experienced in water-scarce areas, water logging and salinity problems are found in high potential areas, and water scarcity with respect to economic, financial, and skilled human resources is found in high need areas. Water-scarce regions lack adequate clean water to meet human drinking water and sanitation needs. This impacts human health, productivity, the environment, and ecosystems. Groundwater development in Uganda has been going on since the 1930s through construction of deep boreholes, shallow wells and protected springs. However, some regions in Uganda which includes the study area (Lyantonde district) have a low groundwater recharge as low as 75mm per year of rainfall received. This research applied geographical information system, remote sensing, Spatial Multi Criteria Evaluation and AUTOCAD tools for informed decision making in the siting of the suitable recharge areas and design of Managed Aquifer Recharge Facilities. Relevant thematic layers were prepared, weights assigned to them and calculations based on the Analytical Hierarchy Process and followed by the weight overlay analysis to ascertain the suitability of the area for intended purpose. Conclusively, the NRCS-SCS method was implemented to calculate the Runoff which would be the source of water for Recharge and acted as a basis for designing different components of the MAR facility.

Keywords

Groundwater, surface water, Recharge, Managed aquifer Recharge, Geographical information systems, Remote sensing, curve number, Analytical Hierarchy Process, National Resources Conservation service, USDA, Runoff

DECLARATION

I MUHINDO ANDREW of REG NO BU/UP/2017/1832, declare to the best of my
knowledge that this final project report is as a result of my research and efforts.
Student's signature:
Date:

ACKNOWLEDGEMENT

I thank the Almighty God for the far that He has brought me, the gift of life, protection and his provision to me during and throughout the writing of this final project report.

I extend my deep sense of gratitude and indebtedness to my academic supervisors, Mr.

Muyingo Emmanuel and Mr.Oketcho Yoromino for their kind attitude, keen interest, immense help, inspiration and encouragement that helped me throughout this final year project.

It would be great unfairness if I omit the role played by my dear parents, family and friends for their tremendous tireless support and guidance given to me during the writing of this proposal.

Lastly, I thank all those who were involved directly or indirectly during my final project report writing especially Mr.okabaka Ivan Elijah and Mr.Kisitu Francis(MWE).

APPROVAL

This project proposal has been submitted to the department of Mining and Water resources Engineering of Busitema University with approval of the following supervisors.

MR. MUYINGO EMMANUEL
Signature:
Date:
MR. OKETCHO YORONIMO
Signature:
Date:

Table of Contents

ABSTR	RACT		i
DECLA	ARATIO	N	ii
APPRO	DVAL		iv
Table	of Cont	ents	v
ACRO	NYMS .		vii
Table	of figur	es	viii
1.0	СНАР	TER ONE: INTRODUCTION	1
1.1	Bad	kground of the study	1
1.1	Ob	jectives	4
1	.1.1	Main objective	4
1	.1.2	Specific objectives	4
1.2	JUS	TIFICATION	4
1.3	SCO	OPE OF THE STUDY	5
2.0	СНАР	TER TWO: LITERATURE REVIEW	6
2.1	Gro	oundwater recharge	6
2	.1.1	Recharge areas	6
2	.1.2	Factors that affect the recharge of groundwater in an area	7
2.2	Art	ificial Aquifer Recharge	10
2	.2.1	SOURCES OF WATER FOR RECHARGE	11
2	.2.2	Artificial Recharge Techniques	12
2	.2.3	ADVANTAGES OF AR OF GROUNDWATER	13
2.3	Inv	estigations for Proper Planning	13
2	.3.1	General Studies	13
2	.3.2	Detailed Studies	14
2.4	Wa	ter balance techniques	14
2	.4.1	Estimation of Groundwater Balance components	15
2.5	AN	OVERVIEW OF GIS	15
2	.5.1	Catchment delineation	16
2	.5.2	Use of multi criteria Decision analysis in Remote sensing and GIS	16
3.0	CHAP	TER THREE: METHODS AND TOOLS	20
3.1	The	e study area	20
3	.1.1	Location and size	21
3	.1.2	Climate	21
3.2	Ma	terials and Methods	21
3.3	То	assess the ground water potential in the study area	21

3.4	To i	dentify and delineate the potential artificial recharge areas	22
3.	4.1	Data collection	22
3.	4.2	Clipping	23
3.	4.3	Extract by Masking	23
3.	4.4	Rasterization	23
3.	4.5	Reclassification	24
3.	4.6	Multi-criteria evaluation	27
3.5	To	design a managed aquifer recharge facilities for the low recharge areas	29
3.	5.1	Runoff estimation for the study area	29
3.	5.2	Design of conveyance system	30
3.	5.3	Design of desilting chamber	33
3.	5.4	Design of Recharge Basin	34
3.	5.5	Checking for the efficiency of desilting basin.	34
4.0	CHAP	FER FOUR: PRESENTATION AND DISCUSSION OF RESULTS	35
4.1	To a	assess the ground water potential in the study area	35
4.	1.1	Well level data analysis	36
4.2	To i	dentify and delineate the potential artificial recharge areas	40
4.	2.1	Preparation of thematic map Layers.	40
4.3	To	design a managed aquifer recharge facilities for the low recharge areas	52
4.	3.1	Runoff estimation	53
4.	3.2	Calculation of curve number	53
4.	3.3	Design of conveyance system	55
4.	3.4	Cross section area of the channel	55
4.	3.5	Wetted perimeter of the channel	56
4.	3.6	Depth and width of the conveyance system	56
4.	3.7	Top width of the section	56
4.	3.8	Channel freeboard	57
4.	3.9	Design of desilting chamber	57
4.	3.10	Design of the recharge Basin with a well	59
5.0	CHAP	TER FIVE: CHALLENGES FACED, CONCLUSION AND RECOMMENDATIONS	62
5.1	Cha	llenges faced	62
5.2	Con	clusion	62
5.3	Rec	ommendations	63
REFERE	ENCES.		64
ΔΡΡΕΝΙ	אוע		69

ACRONYMS

MAR Managed Aquifer Recharge

GIS geographical information system

RS Remote sensing

SDG Sustainable Development Goals

GEC Groundwater estimation committee

CGWB Central Groundwater Board

ASCE American Standard of Civil Engineers

MCDA Multi Criteria Decision Analysis

AHP Analytical Hierarchy Process

GPS Global positioning system

DEM Digital Elevation Model

UNMA Uganda National Meteorological Authority

MWE Ministry of Water and Environment

LG Local Government

DWRM Directorate of Water Resources Management

DGSM Directorate of Geological survey and Mines

UNBS Uganda National Bureau of Standards

MAR Managed Aquifer Recharge

USGS United States Geological Survey

WIOA Weighted Index Overlay Analysis

USDA United States Department of Agriculture

NRCS Natural Resource Conservation Service

AMC Antecedent Moisture Condition

Table of figures

Figure 1 showing recharge and discharge areas	7
Figure 2 shows Flow chart of multi criteria evaluation	17
Figure 3 shows location of the study area	20
Figure 4 shows extract by mask process	23
Figure 5 shows rasterization process	24
Figure 6 shows reclassification process	24
Figure 7 shows the weighting processing	29
Figure 8 shows a bar graph of the fluctuations in recharge	37
Figure 9 bar graphs of annual rainfall	39
Figure 10 shows a bar graph mean monthly temperature	40
Figure 11 shows the land use land cover map	41
Figure 12 shows the rainfall map of Lyantonde district	43
Figure 13 shows the slope map of Lyantonde district	44
Figure 14 shows the geology map of Lyantonde district	45
Figure 15 shows the soil map of the study area	47
Figure 16 shows the different classification of recharge areas	52
Figure 17 shows the side view of the MAR facility	60
Figure 18 shows the plan view of the MAR facility	61
Figure 19 shows a 3D drawing of the managed aquifer recharge facility	73
Table 1 represents the Soil types and their relative porosity	9
Table 2 represents the Soil infiltration rates in inches per hour	9
Table 3 showing data collection	22
Table 4 shows the reclassified drainage density	25
Table 5 shows reclassified slope values in percentage rise	25
Table 6 shows reclassified rainfall values	25
Table 7 shows geology, soil and LULC ranking	26
Table 8 shows weighting System for AHP	27
Table 9 shows Random indices of respective number of parameters	28

Table 10 shows the general characteristics of monitoring well within the vicinity	of the
study area from Ministry of water and Environment	36
Table 11 shows the results of analysis of well data	36
Table 12 shows the analysis of borehole lithological data by subcounty	37
Table 13 shows the aquifer type of each subcounty	38
Table 14 shows the pairwise comparison matrix for the different layers used in t	the
study	49
Table 15 shows Normalized pairwise comparison matrix	49
Table 16 shows calculating the consistency	50
Table 17 shows the different classification of recharge areas	52
Table 18 shows the maximum monthly rainfall used for calculation of runoff	54
Table 19 shows mean monthly temperature	69
Table 20: well level readings from 2013-2019	70
Table 21: Monthly rainfall from 2004-2015	72
Table 22: Borehole data for Lyantonde district	73