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ABSTRACT

More than 309 million people, mostly in developing countries around Africa, South America,
and Asia, are experiencing the IWS (Li et al., 2020, Loubser et al., 2021, Erickson et al.,
2017, Kumpel and Nelson, 2016). In an intermittent water supply that may occur daily, weekly,
or seasonally, the drinking water is provided for less than 24 h per day to the consumers within

the distribution network (Farmani et al., 2021).

The uncertainty in determination of the future available electricity, required water demand, and
complexity in determining and actuation of optimal operation strategies while operating
pumps, valves and tanks has led to Water distribution systems operating intermittently resulting

to unequitable distribution of water to all customers.

If distribution systems are not optimised, there shall be a continued intermittent water supply
due to routine scheduling and basing on experience, and since water demand and power
availability are not put into consideration which in turn affects the flow rate and pressure of

water reaching the customer is affected.

Real time optimisation of pumps, valves and tanks using the use of a genetic algorithm for
optimisation of the system parameters and Epanet-Matlab toolkit for simulation. in water
distribution systems has been carried out individually for each component but not for the three

components together.

To extend the capabilities of the off-line monitoring researchers approached towards usage of
Wireless Sensor Networks (WSN) technology is a collection of connected sensors that collect

data from their environment.

While resolving some of the limitations of offline monitoring systems, this technology also has
some limitations, such as low spatial resolution due to private network infrastructure,
compromised security, energy requirements, storage issues, and high maintenance and
installation costs. (Farmanullah Jan et al 2022). The smart hydroinformatic system forecasts
water demand and electricity availability, optimises valve opening and pump switching on and
off and monitoring and controlling and actuating pumps, valve and tanks wirelessly. This will
help minimise operational costs and maximise system efficiency hence ensuring a reliable and

suitable water supply system.
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1. CHAPTER ONE: INTRODUCTION
This chapter includes; back ground to the study, statement of the problem, objectives of the

study, scope of the study which includes the conceptual scope, geographical scope and time
scope and finally the significance of the study.

1.1. Background
In the earth, water is a very vital commodity needed for survival of all life form. It can be used

for irrigation, drinking, cooking, power production, recreation, machine cooling and cleaning
of raw materials in industries. This commodity is supplied to the consumers through water
distribution networks (WDNs) arranged in branched, looped, or combined system formation
which form part of the primary infrastructure belongings of the general public (Poulakis,
Valougeorgis, & Papadimitriou, 2003). The process of water supply involves the following
steps; collecting, storing, pumping and transporting water through WDNs. The elements of

water WDNSs are reservoir, pumps, tanks, pipes, valves etc (Esiefarienrhe & Effiong, 2014).

Centralized water distribution in developing countries continues to be fraught with great
difficulties. One major deficiency is the intermittent distribution of water. Most distribution
systems operate intermittently because of various constraints among which include electricity
breakouts, drought, unplanned expansion of the network resulting from ever increasing
population, insufficient system data to inform an optimal operation of the distribution network,
excessive water losses and insufficient water resources (Klingel, 2012). IWS also exists
because there is not enough capacity to pressurize the system to supply all consumer taps at the

same time, and due to the leaky infrastructure.

Despite significant international efforts, about 30% of water distribution systems in Africa,
more than 50% of systems in Asia, and about 60% of systems in Latin America do not
consistently provide their users. It is even estimated that 90% and almost 100%, respectively,
of water distribution systems in Southeast Asia and India operate intermittently (Simukonda et
al., 2018).

Intermittent water supply in water distribution networks has several short comings including
water quality degradation and cause waterborne diseases as contaminants enter the pipes
through the leakages, accelerated water network depreciation and operational and maintenance
costs due to repetitively turning on and off of the water supply in the system, un even
distribution of water and reducing the efficiency of water supply (Nyahora et al., 2020). The

requirement to purchase storage tanks, clean or boil water, or cope with waterborne diseases
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