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Abstract

This study investigated soil moisture content with real data measured from cropped farm areas especially
irrigation schemes. Soil moisture content is important in irrigation scheduling (when to irrigate and how
much to irrigate), which is key in the growth and development of the agricultural sector. In order to aid
farmers, get real time soil moisture predictions, we have designed a locally hosted web application using a
maize farmland dataset obtained from Kaggle.com. the application can be used to predict soil moisture to
a tune of 80% accuracy. This application can be used round the clock. In building the model, 5 machine
learning techniques were used and these were Random Forest Algorithm, Gradient Boosting regressor, the
lasso regressor, elastic net regressor and the ridge regressor. With this application, farmers can obtain soil

moisture readings without the need for soil moisture probes.
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CHAPTER 1: INTRODUCTION

1.1 Background of study

Agriculture across many regions in the global south, such as Africa, Latin America, and South Asia, depend
mainly on rainfed agriculture for their staple food production. In Africa over 95% of agriculture is rainfed,
contributing to 65% of the employment and 35% of the gross domestic product on the continent. Agriculture
employs over 70% of Uganda’s population and contributes most to Uganda’s gross domestic product (GDP)
which increased by 3.4 % in 2020-2021 from 17.8 in 2019-20. In 2020, the contribution of agriculture
reached as high as 9715 UGX billion(Bwambale & Mourad, 2022). With a 3% annual growth rate, the
demand for agricultural products for household consumption is increasing and hence more people are

getting involved in agriculture due to the readily available market.

Irrigated agriculture contributes about 40 percent of the global food production from an estimated 20% of
agricultural land, or about 300 million hectares globally (McGuire, 2015). Irrigated farmland typically

generates three times the production of an equivalent area farmed under dry-land systems.

The Government in its Vision 2040 and in the NDP 111 (2016-2020) appropriately lists irrigation investment
as a high priority along with agricultural value-chain development. The National Agricultural Policy (NAP,
Ministry of Agriculture, Animal Industry and Fisheries, MAAIF, 2010), which stipulates the sectoral
approach to the NDP, emphasizes the need for rehabilitating public irrigation schemes, transferring the
management responsibility of irrigation schemes to the lowest appropriate levels and establishing new

irrigation schemes.

Soil moisture Is an important factor in effective irrigation in that determining soil moisture content provides
for a means to determine how much water to irrigate and when to irrigate. Knowing the soil moisture content
of a soil at 2 different dates enables for calculation of the crop water consumption between those dates,
when such measurements are continued for a year or more, it is possible to calculate annual crop water
requirement. The amount of water a soil is able to hold from an irrigation can also be determined from the
same measurements. Soil moisture measurements can as well be used to detect problems that may exist due

to water in the root zone(Marsh, n.d.)

Traditionally, field-based measurements of SM have been limited to in situ recordings using SM

probes. This implies that for large irrigation fields, to have SM measurements from various fields of
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