

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER AND ENGINEERING

TITLE:

IMPROVED PASSIVE INFRA RED MOTION SENSOR SWITCH

 \mathbf{BY}

OPEDUN EMMANUEL- BU/UP/2020/2329

0774411464/0704439971

Email:emmanuelopedun44@gmail.com

AND

WOR OLIVER.S -BU/UP/2020/2328

0771583976

Email:woroliver11@gmail.com

Supervisor

MR. MUGWANYA PATRICK

Project report submitted to the faculty of engineering, department of computer and electrical engineering in partial fulfillment of the requirement for the award of a diploma in industrial electronics and electrical engineering.

SATISFICATION

This is to satisfy that this project was our own handwork (written and constructed by the students listed above and has been prepared in accordance with regulation governing the writing and presentation of projects at BUSITEMA UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF COMPUTER ENGINEERING.

Signature PP Bryozal Potral.

Date 301-01-2023

Supervisor: Mr. Mugwanya Patrick

DECLARATION

We do hereby declare that this project report compiled is our original work and to the best of our knowledge, it has never been published or submitted for the award of any academic qualification in any higher institution of learning.

CANDIDATE'S NAME
OPEDUN EMMANUEL
REG NO: BU/UP/2020/2329
DATE :
SIGNATURE:
CANDIDATE'S NAME
WOR OLIVER.S
REG NO : BU/UP/2020/2328
DATE:
SIGNATURE:

ABSTRACT

This report represents automatic lighting and security system design using PIR motion sensor. Using this sensor, we can certainly minimize the consumption of electrical power. Power crisis is one of the most common problems in Uganda. With the help of the sensors we can eliminate this shortage by minimizing the wastage of electrical power or saving our generated power. PIR is the type of sensor that gives us signal when anything crosses its rays. It is an electronic sensor that measures infrared (IR) light radiating from objects in its field of view. It is a low-cost device used to detect a change in motion in its surroundings within different range of radius. A PIRbased motion detector is used to sense movement of people, animals, or other objects. It can also be helpful in the security systems. In many offices there are pavements where lights kept switched on for the whole night and day. But if we use the sensor then only when it gets motion it will give signal and the lights will be switched on. The whole process can be controlled by using microcontroller. Using the received motion from any movements, the PIR sensor gives high signal to the microcontroller. So we can easily create a program for the microcontroller for setting up an alarm. So this project is very lower costing and also power saving. It also minimizes the electric bills of any office. Moreover, it creates an opportunity for minimizing the load shedding in the cities and villages.

DEDICATION

We dedicate all our efforts and struggles of the educational life to our dear parents. without them we are meaningless, we also dedicate this report to entire Busitema University for providing the better and convenient platform for our studies and other co-circular activities which we acquired from the university, we humbly thank for their support during our studies may the Almighty our Lord bless you all abundantly.

ACKNOWLEDGEMENTS

First and foremost, we glory the Almighty God for good health through during the time of assembling our project. We thank the department of computer and electrical Engineering, the head of department, all the lecturers of computer and electrical department Busitema University, and all the supervisors who guided us.

We also give a special appreciation to our families for mainly financial support towards the accomplishment of our project.

Lastly, great appreciation to our friends Thomas and Abubakar for the great advices and guidance they rendered to us.

LIST OF ABBREVIATIONS

PIR: Passive Infra-Red

IR: Infrared

Contents

SATISFICATION	Error! Bookmark not defined.
DECLARATION	3
ABSTRACT	4
DEDICATION	5
ACKNOWLEDGEMENTS	6
LIST OF ABBREVIATIONS	7
1Chapter one Introduction	12
1.1 Background	12
1.2 Problem statement	13
1.3 Main objective	14
1.3.1 Specific objectives	14
1.4 Justification	14
1.5.1 Technical scope	14
1.5.2 Geographical scope	15
1.5.3 Time scope	15
2Chapter two	15
2.1 Literature review	15
2.1.1 Wall- mounted switch	15
2.1.2 Clap lighting switch	16
2.1.3 PIR motion sensor switch	16
2.2 Automatic lighting applications	17
2.2.1 Security applications	17
2.2.2 Placement	18
2.3 Existing switch system comparisons	18
2.3.1 Block diagram of existing PIR motion sensor switch	19
2.4 Other Software components	19
2.4.1 Arduino programmer	19
2.4.2 PIR motion sensor	20
2.4.3 Relays	21
2.4.4 Bulb	22
3.1 Introduction	22
3.2 Requirements Gathering	23

3.2.1	Data Collection	23
3.2.2	Document Review	23
3.2.3	Consultation	23
3.3 I	Requirements Analysis	23
3.3.1	Functional Requirements	24
3.3.2	Non-functional Requirements	24
3.4 C	omponents	24
3.4.1	Arduino programmer	24
3.4.2	Grove adjustable PIR motion sensor	24
3.4.3	Relays	25
3.4.4	Bulb	26
3.4.5	Resistor	27
3.4.6	Jumper Wire	27
3.4.7	Led light	28
3.4.8	5volt power bank	28
3.5 Fea	tures of the Adjustable PIR motion sensor	29
3.6 Spe	ecification	29
3.7 Typ	oical applications	30
3.8 Cor	nstruction and collection of the project	30
3.8.1	Schematic	31
3.8.2	Block diagram	31
3.8.3	Connection layout of components	32
3.8.4	Circuit diagram	32
3.8.5	Program code	33
4Chapter f	our	34
4.1 Mo	ode of operation	34
4.2 Sys	stem implementation	34
4.2.1	System design	35
4.2.2	Implementation of physical design	35
4.3 Tes	ting and validation	35
4.4 Tes	ting of the sensor	35
5 Chapter	five	36
5.1	Challenges	36

5.2	Recommendations	.36
5.3	Conclusion	.36
References		

List of Figures

Figure 1 wall-mounted switch	
Figure 2 clapper	16
Figure 3 PIR sensor	17
Figure 4 block diagram	19
Figure 5 Arduino	19
Figure 6 PIR sensor	20
Figure 7 relay	21
Figure 8 bulb	22
Figure 9 Arduino	24
Figure 10 PIR motion sensor	25
Figure 11 relay	25
Figure 12 bulb	26
Figure 13 resistors	27
Figure 14 jumper wires	27
Figure 15 led light	28
Figure 16 power bank(5volt souce)	28
Figure 17 pir sensor front view	30
Figure 18 pir sensor back view	30
Figure 19 power diagram of sensor	31
Figure 20 layout diagram	32
Figure 21 circuit diagram	
Figure 22	39
Figure 23	40

1Chapter one Introduction

1.1 Background

The first motion detector was invented in the early 1950s by Samuel Bango, and which was a burglar alarm. He applied the fundamentals of a radar to ultrasonic waves – a frequency to detect fire or thief and that which human beings cannot hear. Samuel motion detector is based on the principle of Doppler Effect. Nowadays, most of the motion detectors work on the principle of Samuel Bango's detector. IR sensors and microwave sensors can detect motion by the alterations in the frequencies they emit.

Motion detectors are used as security systems in banks, offices and shopping malls, and also as intruder alarm in home. The prevailing motion detectors can stop serious accidents by sensing the persons who are in close proximity to the detector. We can observe motion detectors in shopping malls or stores with automatic doors. The main element in the motion detector circuit is the dual infrared reflective sensor or any other detecting sensor.

An electronic motion detector contains an optical, microwave, or acoustic sensor, and in many cases a transmitter for illumination. However, a passive sensor only senses a signal emitted by the moving object itself. Changes in the optical, microwave, or acoustic field in the device's proximity are interpreted by the electronics based on one of the technologies listed below. Most inexpensive motion detectors can detect up to distances of at least 15 feet (5 meters). Specialized systems are more expensive but have much longer ranges. Tomographic motion detection systems can cover much larger areas because the radio waves are at frequencies which penetrate most walls and obstructions, and are detected in multiple locations, not just at the location of the transmitter.

Motion detectors have found wide use in domestic and commercial applications. One common application is activation of automatic door openers in businesses and public buildings. Motion sensors are also widely used in lieu of a true occupancy sensor in activating street lights or indoor lights in walk ways (such as lobbies and staircases). In such "Smart Lighting" systems, energy is conserved by only powering the lights for the duration of a timer, after which the person has presumably left the area. A motion detector may be among the sensors of a burglar alarm that is used to alert the home owner or security service when it detects the motion of a

References

- 1) "The 21st Century Clapper". Gizmodo. Retrieved 24 December 2013.
- 2) KTRE News. Retrieved 24 December 2013
- 3) KCBD News. December 25, 2002. Archived from the original on February 24, 2003. Retrieved 24 December 2013
- 4) Heath Co LLC. Archived from the original on 13 September 2014. Retrieved 6 November 2018.
- 5) Warren R Walker, "Electric switch of the fluid flow type", published 1937-12-07, issued 1937-12-07, assigned to General Electric Vapor Lamp Co
- 6) MICRPCHIP data sheet, PIC18FXX2, 2006 Microchip Technology Inc
- 7) MSP430-PIR motion sensor development board user manual
- 8) Micro A7800 Series Positive Voltage Regulators
- 9) PIR Motion Sensor Operation, retrieved on 05/07/2017
- 10)] K. Eldhose, F. Farzeen, D. Varghese, D. Ravindran and J. Eliena, Development of automatic light control system for energy efficient buildings, IJAREEIE, (2007), 7690 7693.
- 11) R. Norhayanie, Energy Saving Control System Application in Lecture Hall, University Malaysia Pahang, Electrical and Electronics Engineering (2008).
- 12) Inspector's Technical Guide. US Food and Drug Administration. 1978-01-16. Archived from the original on 2008-04-03. Retrieved 2008-06-11.
- 13) RadioShack. Archived from the original on 11 July 2017. Retrieved 11 July 2017.

- 14) Resisitorguide.com. resistor guide. Retrieved 3 December 2017.
- 15) Ben-Ezra, Moshe; Wang, Jiaping; Wilburn, Bennett; Xiaoyang Li; Le Ma (2008). "An LED-only BRDF measurement device". 2008 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8.
- 16) Cambridge Centre for Gallium Nitride. Gan.msm.cam.ac.uk. Retrieved July 31, 2018.